Alpine Skiing Pythagoras Answers

Calculate the missing length for each slalom, giving your answer correct to 3 significant figures. What is the total distance covered by the skier, assuming they take the shortest route possible between each slalom?
$a=\sqrt{\left(3^{2}+20^{2}\right)}$
$b=\sqrt{\left(9^{2}+23^{2}\right)}$
$c=\sqrt{\left(19^{2}-18^{2}\right)}$
$d=\sqrt{\left(25^{2}-8^{2}\right)}$
$a=20.2 \mathrm{~m}$
$b=\mathbf{2 4 . 7} \mathrm{m}$
$c=6.08 \mathrm{~m}$
$d=23.7 \mathrm{~m}$
$e=\sqrt{\left(30^{2}-5^{2}\right)}$
$e=29.6 \mathrm{~m}$
$2 f^{2}=17^{2}$
$f=\sqrt{\frac{17^{2}}{2}}$
$g=\sqrt{\left(4^{2}+0.5^{2}\right)}$
$f=12.0 \mathrm{~m}$
$g=4.03 \mathrm{~m}$

Total distance $=\mathbf{2 0 . 2} \mathbf{m}+\mathbf{2 4 . 7} \mathbf{m}+19 \mathrm{~m}+25 \mathrm{~m}+30 \mathrm{~m}+17 \mathrm{~m}+4.03 \mathrm{~m}$
Total distance $=139.93 \mathrm{~m}$ (or 139.95 m if the individual answers were not rounded)

Extension:

Construct a scale diagram of the ski slope, using a scale of $1 \mathrm{~cm}=2 \mathrm{~m}$.
Students will need to use a compass, protractor and ruler to accurately construct each triangle. The measurements for each triangle become:

First slalom:	Second slalom:	Third slalom:	Fourth slalom:
$3 \mathrm{~m}=1.5 \mathrm{~cm}$	$9 \mathrm{~m}=4.5 \mathrm{~cm}$	$19 \mathrm{~m}=9.5 \mathrm{~cm}$	$25 \mathrm{~m}=12.5 \mathrm{~cm}$
$20 \mathrm{~m}=10 \mathrm{~cm}$	$23 \mathrm{~m}=11.5 \mathrm{~cm}$	$18 \mathrm{~m}=9 \mathrm{~cm}$	$8 \mathrm{~m}=4 \mathrm{~cm}$
$20.2 \mathrm{~m}=10.1 \mathrm{~cm}$	$24.7 \mathrm{~m}=12.35 \mathrm{~cm}$	$6.08 \mathrm{~m}=3.04 \mathrm{~cm}$	$23.7 \mathrm{~m}=11.85 \mathrm{~cm}$
Fifth slalom:	Sixth slalom:	Finish:	
$30 \mathrm{~m}=15 \mathrm{~cm}$	$17 \mathrm{~m}=8.5 \mathrm{~cm}$	$4 \mathrm{~m}=2 \mathrm{~cm}$	
$5 \mathrm{~m}=2.5 \mathrm{~cm}$	$12.0 \mathrm{~m}=6 \mathrm{~cm}$	$0.5 \mathrm{~m}=0.25 \mathrm{~cm}$	
$29.6 \mathrm{~m}=14.8 \mathrm{~cm}$		$4.03 \mathrm{~m}=2.02 \mathrm{~cm}$ (to 3s.f.)	

Alpine Skiing Pythagoras

Instructions:

Below is the plan view of the alpine ski slope (not drawn to scale). Calculate the missing length on each slalom, giving your answers correct to 3 significant figures. What is the total distance covered by the skier, assuming they take the shortest route possible between each slalom?

Total distance $=$ \qquad

Extension:

Construct a scale diagram of the ski slope, using a scale of $1 \mathrm{~cm}=2 \mathrm{~m}$.

Alpine Skiing Trigonometry Answers

Calculate the missing angle or length for each slalom, giving your answers correct to 3 significant figures.
$a=\tan ^{-1}\left(\frac{5}{17}\right)$
$b=\tan ^{-1}\left(\frac{18}{11.4}\right)$
$c=\frac{15.2}{\tan 70}$
$a=16.4^{\circ}$
$b=57.7^{\circ}$
$c=5.53 \mathrm{~m}$
$d=21 \times \sin 35$
$e=\sin ^{-1}\left(\frac{2.4}{24}\right)$
$f=\frac{4}{\cos 70}$
$d=12.0 \mathrm{~m}$
$e=5.74^{\circ}$
$f=11.7 \mathrm{~m}$

Extension:

Construct a scale diagram of the ski slope, using a scale of $1 \mathrm{~cm}=2 \mathrm{~m}$.
Angles remain the same but the measurements change as follows:

First slalom:
$5 \mathrm{~m}=2.5 \mathrm{~cm}$
$17 \mathrm{~m}=8.5 \mathrm{~m}$

Fourth slalom:
$21 \mathrm{~m}=10.5 \mathrm{~cm}$
$12.0 \mathrm{~m}=6 \mathrm{~cm}$

Second slalom:
$11.4 \mathrm{~m}=5.7 \mathrm{~cm}$
$18 \mathrm{~m}=9 \mathrm{~cm}$

Fifth slalom:
$24 \mathrm{~m}=12 \mathrm{~cm}$
$2.4 \mathrm{~m}=1.2 \mathrm{~cm}$

Third slalom:
$15.2 \mathrm{~m}=7.6 \mathrm{~cm}$
$5.53 \mathrm{~m}=2.77 \mathrm{~cm}$ (3s.f.)

Finish:
$4 \mathrm{~m}=2 \mathrm{~cm}$
$11.7 \mathrm{~m}=5.85 \mathrm{~cm}$

Alpine Skiing Trigonometry

Instructions:

Below is the plan view of the alpine ski slope (not drawn to scale). Calculate the missing angle or length for each slalom, giving your answers correct to 3 significant figures.

$a=\square d=$
$b=$
\qquad

$$
e=
$$

\qquad
$c=$ \qquad $f=$ \qquad

Extension:

Construct a scale diagram of the ski slope, using a scale of $1 \mathrm{~cm}=2 \mathrm{~m}$.

Speed Skating Events Answers

Instructions:

You are given two values out of speed, distance or time from several different speed skating events. Calculate the missing values. Give the time and speed to 1 decimal place and the distance to the nearest 100 m .

Men's Events Results

Name	Country	Distance $\mathbf{(m)}$	Time	Average Speed (m/s)
Michel	Netherlands	500 m	34.7 seconds	$\mathbf{1 4 . 4}$
Jan	Netherlands	500 m	$\mathbf{3 5 . 2}$ seconds	14.2
Zbigniew	Poland	$\mathbf{1 5 0 0 m}$	105 seconds	14.3
Sven	Netherlands	5000 m	6 minutes 10.8 seconds $=\mathbf{3 7 0 . 8}$ seconds	$\mathbf{1 3 . 5}$
Jorrit	Netherlands	$\mathbf{1 0 0 0 0 m}$	12 minutes 44.5 seconds $=\mathbf{7 6 4 . 5}$ seconds	13.1

Women's Events Results

Name	Country	Distance (km)	Time	Average Speed (m/s)
Martina	Czech Republic	$3=\mathbf{3 0 0 0 m}$	4 minutes 2.0 seconds $=\mathbf{2 4 2}$ seconds	$\mathbf{1 2 . 4}$
Olga	Russia	$3=\mathbf{3 0 0 0 m}$	$\mathbf{2 4 3 . 9}$ seconds	12.3
Sang	Korea	$\mathbf{0 . 5}=\mathbf{5 0 0 m}$	35.45 seconds	14.1
Ireen	Netherlands	$5=\mathbf{5 0 0 0 m}$	$\mathbf{4 1 3 . 2}$ seconds	12.1
Hong	China	$\mathbf{1 = 1 0 0 0 m}$	1 minute 14.1 seconds $=\mathbf{7 4 . 1}$ seconds	13.5

Extension:

The world record time for the 500 m in 1994 was 35.76 seconds. Which competitors achieved a greater average speed in their event in the table?

This is an average speed of $500 \div 35.76=14.0 \mathrm{~m} / \mathrm{s}$ (to $3 \mathrm{~s} . \mathrm{f}$.).
The competitors who beat this average speed were Michel, Jan, Zbigniew and Sang.

What is the percentage improvement in time from the world record holder in 1994 to the fastest competitor in the table?

The fastest competitor in the table was Michel who completed the 500 m in 34.7 seconds. To calculate the percentage improvement, we complete the following calculations:
35.76 - $34.7=1.06$
$\frac{1.06}{35.76}=0.0296=2.96 \%$ (to 3s.f.)

Speed Skating Events

Instructions:

You are given two values out of speed, distance or time from several different speed skating events. Calculate the missing values. Give the time and speed to 1 decimal place and the distance to the nearest 100 m .

Men's Events Results

Name	Country	Distance (m)	Time	Average Speed (m/s)
Michel	Netherlands	500 m	34.7 seconds	
Jan	Netherlands	500 m		14.2
Zbigniew	Poland		105 seconds	14.3
Sven	Netherlands	5000 m	6 minutes 10.8 seconds	
Jorrit	Netherlands		12 minutes 44.5 seconds	13.1

Women's Events Results

Name	Country	Distance (km)	Time	Average Speed (m/s)
Martina	Czech Republic	3	4 minutes 2.0 seconds	
Olga	Russia	3		12.3
Sang	Korea		35.45 seconds	14.1
Ireen	Netherlands	5		12.1
Hong	China		1 minute 14.1 seconds	13.5

Extension:

The world record time for the 500 m in 1994 was 35.76 seconds. Which competitors achieved a greater average speed in their event in the table?
\qquad
\qquad
\qquad

What is the percentage improvement in time from the world record holder in 1994 to the fastest competitor in the table?

Winter Olympics Codebreaking Answers

Calculate the percentage of each amount to find a letter. Unscramble your letters to find the name of an event from the Winter Olympics.

A	B	C	D	E	G	H	I	K	L	N	O	R	S	T	U	W
1.5	8	17	69.3	90	18	100	3	21	30	7.5	5	27	14	45	9	37.6

a. 25% of 120 30 8

100
5
18
8
5% of 60,
3
14
90
Bobsleigh
b. 50% of 10 ,
25% of 30 ,
20% of 40 ,
50% of 90 ,
25% of 400 ,
100
75% of 40 ,
10% of 30 ,
5% of 30
5
7.5

8
45
30
3
1.5
c. 60% of $50,25 \%$ of $12,20 \%$ of $90,10 \%$ of $90,30 \%$ of $90,50 \%$ of $34,10 \%$ of 75

9
27
17
7.5

Curling
d. 20% of 150

30
14
90
45
5
21
90
7.5

Skeleton
e. 12% of $150,150 \%$ of $20,15 \%$ of $60,60 \%$ of 150

18
30
9
90
f. 99% of $70,90 \%$ of $30,3 \%$ of $50,47 \%$ of $80,12.5 \%$ of 64 ,
12.5% of 40 4% of $125,7.5 \%$ of 100 ,
25% of 56
69.3

27
1.5
37.6

8
5
5
7.5

14

Winter Olympics Codebreaking

Calculate the percentage of each amount to find a letter. Unscramble your letters to find the name of an event from the Winter Olympics.

A	B	C	D	E	G	H	I	K	L	N	O	R	S	T	U	W
1.5	8	17	69.3	90	18	100	3	21	30	7.5	5	27	14	45	9	37.6

a. 25% of $120,10 \%$ of $80,50 \%$ of $200,10 \%$ of $50,30 \%$ of $60,5 \%$ of $160,5 \%$ of $60,20 \%$ of $70,75 \%$ of 120
b. 50% of $10,25 \%$ of $30,20 \%$ of $40,50 \%$ of $90,25 \%$ of $400,75 \%$ of $40,10 \%$ of $30,5 \%$ of 30
c. 60% of $50,25 \%$ of $12,20 \%$ of $90,10 \%$ of $90,30 \%$ of $90,50 \%$ of $34,10 \%$ of 75
\qquad
\square
e. 12% of $150,150 \%$ of $20,15 \%$ of $60,60 \%$ of 150
\qquad
\square
f. 99% of $70, ~ 90 \%$ of $30,3 \%$ of $50,47 \%$ of $80,12.5 \%$ of $64,12.5 \%$ of $40,4 \%$ of $125,7.5 \%$ of $100,25 \%$ of 56

Winter Olympics - Luge Statistics Answers

The tables on the next page contain the times taken to complete the run for the women's and men's luge event, correct to 1 decimal place.

1. Calculate the mean, median, mode and range for each set of results.

Men's event:

mean $=209.4$ seconds
mode $=209.4$ seconds
median $=209.5$ seconds
range $=2.8$ seconds

Women's event:

mean $=202.12$ seconds
mode $=201.2$ seconds and 202.1 seconds (this is called bimodal)
median $=202.1$ seconds
range $=4.3$ seconds
2. Construct a box plot for each set of results.

Men's event:

lower quartile = 209.4 seconds
upper quartile $=209.8$ seconds

Women's event:

lower quartile $=201.2$ seconds
upper quartile $=203.1$ seconds

3. Compare the averages and distributions of each set of results. In which event were the competitors faster? Explain these results.

On average, the women's times were lower; we know this because their mean, median and modal times were all lower than the men's. However, the interquartile range for the women was larger which means their results were less consistent.
4. The women's event is actually 300 m shorter than the men's event. Suggest a fairer way to compare the results.

The speeds rather than the times should be compared.

Men's Singles		Country
Name	Time (Seconds)	
Felix	Germany	207.5
Albert	Russia	208.0
Armin	Italy	208.8
Andi	Germany	209.4
Seme	Russia	209.4
Dominik	Italy	209.4
Aleksander	Russia	209.5
Reinhard	Austria	209.5
Wolfgang	Austria	209.7
Martins	Latvia	209.7
Samuel	Canada	209.8
Gregory	Switzerland	209.8
Christopher	USA	210.0
David	Germany	210.2
Daniel	Austria	210.3

Women's Singles

Name	Country	Time (Seconds)
Natalie	Germany	199.8
Tatjana	Germany	200.9
Erin	USA	201.1
Alex	Canada	201.2
Kimberly	Canada	201.2
Anke	Germany	202.0
Tatina	Russia	202.1
Natalia	Russia	202.1
Martina	Switzerland	202.2
Kate	USA	202.3
Ekaterina	Russia	202.7
Eliza	Latvia	203.1
Arianne	Canada	203.2
Sandra	Italy	203.8
Summer	USA	204.1

Winter Olympics - Luge Statistics

The tables on the next page contain the times taken to complete the run for the women's and men's luge event, correct to 1 decimal place.

1. Calculate the mean, median, mode and range for each set of results.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. Construct a box plot for each set of results.
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

3. Compare the averages and distributions of each set of results. In which event were the competitors faster? Explain these results.
\qquad
\qquad
\qquad
\qquad
4. The women's event is actually 300 m shorter than the men's event. Suggest a fairer way to compare the results.

Men's Singles

Name	Country	Time (Seconds)
Felix	Germany	207.5
Albert	Russia	208.0
Armin	Italy	208.8
Andi	Germany	209.4
Seme	Russia	209.4
Dominik	Italy	209.4
Aleksander	Russia	209.5
Reinhard	Austria	209.5
Wolfgang	Austria	209.7
Martins	Latvia	209.7
Samuel	Canada	209.8
Gregory	Switzerland	209.8
Christopher	USA	210.0
David	Germany	210.2
Daniel	Austria	210.3

Women's Singles		
Name	Country	Time (Seconds)
Natalie	Germany	199.8
Tatjana	Germany	200.9
Erin	USA	201.1
Alex	Canada	201.2
Kimberly	Canada	201.2
Anke	Germany	202.0
Tatina	Russia	202.1
Natalia	Russia	202.1
Martina	Switzerland	202.2
Kate	USA	202.3
Ekaterina	Russia	202.7
Eliza	Latvia	203.1
Arianne	Canada	203.2
Sandra	Italy	203.8
Summer	USA	204.1

Winter Olympics Answers

1. The Winter Olympics began in 1924, when Team GB's fastest four-man bobsleigh time was 88 seconds. Ninety years later, Team GB's fastest time was 55 seconds. Calculate the percentage decrease in their fastest time.
88-55 = 33
or
$\frac{55}{88}=0.625=62.5 \%$
$\frac{33}{88} \times 100=37.5 \%$
100-62.5 = 37.5\%
2. A competitor completed the 1000 m speed skating track in 1 minute 26 seconds. Calculate his average speed in m / s, giving your answer correct to 1 decimal place.

Speed $=$ distance \div time
Speed $=1000 \div 86$

$$
=11.6 \mathrm{~m} / \mathrm{s} \text { (to 1d.p.) }
$$

3. In the snowboard half-pipe event, competitors perform tricks whilst in the air above the half-pipe. When completing a full jump, the snowboarder's height in metres (y) at t seconds is given by $y=5 t-t^{2}+10$. Calculate the snowboarder's height after 1.5 seconds.
$y=5 \times 1.5-1.5^{2}+10$
$y=15.25 \mathrm{~m}$
4. The biathlon combines cross-country skiing with rifle shooting.
a. The start of the ski slope is 1650 ft above the end of the slope. The competitors descend the slope at an angle of 43° with the horizontal. Calculate the length of the slope. Give your answer correct to one decimal place.

$1650 \div \sin (43)=2419.4 \mathrm{ft}$
b. A biathlete carries a small-bore rifle which weighs 3.5 kilograms, measured to 1 decimal place. Using inequalities, describe the error interval.
$3.45 \mathrm{~kg} \leq x<3.55 \mathrm{~kg}$
Where x is the weight of the rifle.
5. The elevation of the starting point of each of the alpine skiing events are given as follows:

2045m, 1755m, 1160m, 1947m, 1755m, 1592m, 1580m, 1370m, 1365m, 1100m, 1160m
a. Calculate the median elevation.

The median is the middle number when they are in order.
1100, 1160, 1160, 1365, 1370, 1580, 1592, 1755, 1755, 1947, 2045
median $=1580 \mathrm{~m}$
b. Construct a box and whisker plot showing the distribution of elevations for this event.
smallest $=1100 \quad$ median $=1580 \quad$ largest $=2045$
$L Q=1160 \quad U Q=1755$

c. Information about the starting point elevations for the cross-country skiing events are shown in the box and whisker plot below. Compare the data for the alpine skiing events and the cross-country skiing events.

The median for the cross-country skiing event is lower which means the average elevation is lower than in the alpine skiing event. The interquartile range for the alpine skiing event is larger which means the elevations are less consistent/more spread out than the cross-country skiing event.
6. A speed skating ice rink is a circle with a diameter of 61 m . Calculate the area of the ice rink, giving your answer correct to 3 significant figures.

Area $=\pi \times 30.5^{2}$
Area $=2920 \mathrm{~m}^{2}$

Winter Olympics

1. The Winter Olympics began in 1924, when Team GB's fastest four-man bobsleigh time was 88 seconds. Ninety years later, Team GB's fastest time was 55 seconds. Calculate the percentage decrease in their fastest time.
\qquad
\qquad
2. A competitor completed the 1000 m speed skating track in 1 minute 26 seconds. Calculate his average speed in m / s, giving your answer correct to 1 decimal place.
\qquad
\qquad
3. In the snowboard half-pipe event, competitors perform tricks whilst in the air above the half-pipe. When completing a full jump, the snowboarder's height in metres (y) at t seconds is given by $y=5 t-t^{2}+10$. Calculate the snowboarder's height after 1.5 seconds.
\qquad
\qquad
4. The biathlon combines cross-country skiing with rifle shooting.
a. The start of the ski slope is 1650 ft above the end of the slope. The competitors descend the slope at an angle of 43° with the horizontal. Calculate the length of the slope. Give your answer correct to one decimal place.

b. A biathlete carries a small-bore rifle which weighs 3.5 kilograms, measured to 1 decimal place. Using inequalities, describe the error interval.
\qquad
\qquad
5. The elevation of the starting point of each of the alpine skiing events are given as follows:

2045m, 1755m, 1160m, 1947m, 1755m, 1592m, 1580m, 1370m, 1365m, 1100m, 1160m
a. Calculate the median elevation.
\qquad
\qquad
\qquad
b. Construct a box and whisker plot showing the distribution of elevations for this event.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

c. Information about the starting point elevations for the cross-country skiing events are shown in the box and whisker plot below. Compare the data for the alpine skiing events and the cross-country skiing events.

\qquad
\qquad
\qquad
\qquad
6. A speed skating ice rink is a circle with a diameter of 61 m . Calculate the area of the ice rink, giving your answer correct to 3 significant figures.
\qquad
\qquad

